
Gases in two dimensions: universal thermodynamics and its consequences

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2002 J. Phys. A: Math. Gen. 35 7255

(http://iopscience.iop.org/0305-4470/35/34/302)

Download details:

IP Address: 171.66.16.107

The article was downloaded on 02/06/2010 at 10:19

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/35/34
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 35 (2002) 7255–7267 PII: S0305-4470(02)37100-2

Gases in two dimensions: universal thermodynamics
and its consequences
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Abstract
I discuss ideal and interacting quantum gases obeying general fractional
exclusion statistics. For systems with constant density of single-particle states,
described in the mean field approximation, the entropy depends neither on the
microscopic exclusion statistics, nor on the interaction. Such systems are called
thermodynamically equivalent and I show that the microscopic reason for this
equivalence is a one-to-one correspondence between the excited states of these
systems. This provides a method, different from the bosonization technique,
of transforming between systems of different exclusion statistics. In the last
section the macroscopic aspects of this method are discussed.

In appendix A, I calculate the fluctuation of the ground-state population
of a condensed Bose gas in a grand-canonical ensemble and mean field
approximation, while in appendix B I show a situation where although the
system exhibits fractional exclusion properties on microscopic energy intervals,
a rigorous calculation of the population of single-particle states reveals a
condensation phenomenon. This also implies a malfunction of the usual and
simplified calculation technique of the most probable statistical distributions.

PACS numbers: 05.30.Ch, 05.30.Pr, 05.30.Jp, 05.70.−a

1. Introduction

Considerable interest has been shown in recent years in the study of particle systems that
exhibit fractional exclusion statistics (FES)—a model introduced by Haldane in [1] and
which applies, among others, to quasiparticle excitations at the lowest Landau level in the
fractional quantum Hall effect and spinon excitations in a spin- 1

2 quantum antiferromagnet
[1]. The general thermodynamic properties of these systems have been deduced mainly by
Isakov [2, 3] and Wu [4]. Isakov also showed that anyons [5] and one-dimensional (1D)
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systems of particles described by the thermodynamic Bethe ansatz (TBA) [6–8] have the same
thermodynamic behaviour as the systems exhibiting FES. Since a similar thermodynamic
behaviour of two systems implies a similarity between the excitation spectra and
eventually—depending on the ensemble in which the thermodynamics is discussed—the same
ground-state energies as functions of the particle numbers, this is irrelevant for comparing
the microscopic properties of the constituent particles. Sutherland and Iguchi generalized
the concept of the Bethe ansatz from one dimension to two and three dimensions (2D, 3D),
showing that bosons and fermions described by this model also exhibit fractional exclusion
statistics at the microscopic level [9].

The Bethe ansatz was first used to calculate Hamiltonian eigenvectors of 1D spin chains
with anisotropic spin–spin interaction (see, for example, [10], and references therein) and then
applied, starting with Lieb and Liniger [6], to interacting trapped particles. The model applies
in general to dilute systems, with short-range two-body interaction. At the other extreme are
dense systems with long range interaction, as compared to interparticle distance, which may
be described in the mean field approximation (MFA). Nevertheless, MFA is also applied to
dilute systems.

Murthy and Shankar were the first to modify the MFA model for a Fermi system [11]—let
me call this new model MFA′—by redistributing the mean field interaction among single-
particle energies, so that a particle of energy ε is assumed to interact just with particles
of energy ε ′ < ε (see appendix B). Within the MFA′ model, the interacting Fermi system is
equivalent to an ideal Haldane system of statistics parameterαwhich depends on the interaction
strength. Independently, Hansson et al [12] used the MFA′ model to define single-particle
energies in a field theory of anyons at the lowest Landau level, while Isakov and Viefers [13],
among other things, showed again that this model reproduces Haldane’s FES. All these results
have been obtained for constant DOS in the ideal systems.

More recently, Bhaduri et al [14] also showed that a repulsively interacting 2D MFA Bose
gas has identical thermodynamic parameters to an ideal FES gas with α again fixed by the
interaction strength. Continuing [14], Hansson et al [15] discussed the applicability of the MFA
to bosons with repulsive delta function interaction, in quasi 2D traps, and again transformed
the MFA into MFA′ to calculate the thermodynamic parameters of the corresponding FES gas.

In what follows I shall say that two systems are thermodynamically equivalent if they
have the same entropy as a function of temperature, at fixed volume (or external potential)
and particle number. The amazing thermodynamic similarity in 2D between interacting Bose
or Fermi systems, and ideal FES systems with properly chosen statistics parameter α rests on
their thermodynamic equivalence.

To show the special character of nonrelativistic 2D ideal systems, I will start by deriving
unified expressions for their thermodynamic quantities in terms of polylogarithmic functions
[16]. This bridges Lee’s description of bosons and fermions [17, 18] through the intermediate
statistics of haldons and emphasizes in a most simple way the thermodynamic equivalence
of the systems with constant DOS of any statistics. The thermodynamic equivalence of
2D Bose and Fermi systems was proved by several authors [19–23]. The fact that the
temperature dependence of the thermodynamic potentials of Haldane systems with constant
DOS is independent of statistics was observed before [24]. Here I merely identify the
functions involved,which makes the writing and manipulation of the thermodynamic quantities
much easier and compact. In section 2.2, I give the microscopic explanation of this
equivalence, which rests not on a microscopic similarity between systems, but on a one-
to-one correspondence between the excited states of these systems. This also gives us a
transformation method between systems of different statistics, which will be extended to
more general spectra elsewhere [25]. In section 3.2, based only on macroscopic arguments,
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I show that all the thermodynamic quantities describing 2D systems in the Thomas–Fermi
approximation and in any trapping potential, depend only on the temperature and the ground-
state energy density, which is a function of particle density. This leads to the definition
of classes of thermodynamically equivalent systems. Since the proof is based only on
macroscopic arguments, it shows explicitly that similar thermodynamic behaviour does not
imply microscopic similarity. Based on sections 2 and 3, I can say that the transformation
from MFA to MFA′ merely sets an abstract point of view or counting rule. In appendix A, I
calculate the fluctuation of the ground-state population of a condensed Bose gas in the MFA
approximation and finally, in appendix B, I compare in more detail the results given by MFA
and MFA′ models. I show that in the case of interacting bosons in 2D boxes, depending on the
choice of a parameter, MFA′ may lead to condensation on the lowest energy level, in contrast
to MFA.

2. Ideal Haldane systems with constant density of states

2.1. Thermodynamic equivalence

In what follows I shall consider Haldane systems with DOS of the form σ(ε) = Cεs (s > −1),
where C is a constant and ε is the single-particle energy. If the system (of nonrelativistic
particles) is in a d-dimensional (d D) container with no external fields, C is proportional to
the hypervolume and s = d/2 − 1. The exclusion statistics, characterized by the energy-
independent parameter α � 0, is manifested between particles within the same infinitesimal
energy interval δε [4]. The values α = 0 and α = 1 correspond to Bose and Fermi statistics,
respectively. With this notation, the average population of a single-particle state is [4]

n(ε) = {w(ζε) + α}−1 (1)

where w satisfies the equation w(ζε)
α[1 + w(ζε)]1−α = ζ−1

ε ≡ e(ε−µ)/kBT , in obvious
notation (see appendix B for a special case). The grand canonical thermodynamic potential,
� ≡ −PV = kBT

∫∞
0 dε Cεs log {(1 − αn)/[1 + (1 − α)n]} [4], can be put in the form

PV = 1

s + 1

∫ ∞

0
dε Cεs+1n(ε) ≡ U

s + 1
(2)

where U is the internal energy. The total number of particles is N = ∫∞
0 dεCεsn(ε). All these

functions may be calculated by expressing ε in terms of w, but the integrals cannot be performed
analytically for general s and T. Nevertheless, for s = 0 (σ ≡ C), all the thermodynamic
quantities can be expressed in terms of elementary or polylogarithmic functions. I start with

N = kBT σ log (1 + y0) (3)

where y0 satisfies the equation (1 + y0)
1−α/y0 = ζ−1 ≡ e−µ/kBT . Note that y0 depends on

N and T, but not on α. Moreover, 0 = y0(N, T = ∞) � y0(N, T ) � y0(N, T = 0) = ∞.
From equation (3) follows

exp [(µ − αN/σ)/kBT ] = 1 − exp [−N/(σkBT )] (4)

where I identify the (generalized) Fermi energy as εF ≡ limT →0 µ = αN/σ and observe that
µ − εF is also independent of α. After some algebra I get the desired expression for � and U:

� = −U = (kBT )2σ

[
1 − α

2
log2 (1 + y0) + Li2(−y0)

]
(5)
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where Li2 is Euler’s dilogarithm [16]. Using the relation Li2(x) + Li2[−x/(1 − x)] =
− 1

2 log2 (1 − x), valid for any x < 1 [16], one can prove that � � 0 for any α � 0 and
y0 � 0, as expected. Combining equations (3) and (5), it follows that

� = −U = 1 − α

2

N2

σ
+ (kBT )2σLi2(−y0). (6)

In equations (3) and (6) the equivalence between ideal gases obeying any statistics is
highlighted in the simplest way. Since y0 does not depend on statistics, but just on N and T, it
is obvious that the difference between the thermodynamic potentials of particles with different
α comes just from an additive constant. All the temperature dependences are the same. As
an example, one can set α = 0 and α = 1 and use the Landen relations [16] to re-obtain the
familiar Bose and Fermi thermodynamic potentials [19, 20]. Making use of equations (6) and
(3), one can obtain in the usual way expressions for the entropy and specific heat, which are
both independent of α:

S = −k2
BT σ [2Li2(−y0) + log (1 + y0) log y0] (7)

CV = − N2

T σ

1 + y0

y0
− 2k2

BT σLi2(−y0). (8)

Since, according to equation (3), y0 → ∞ when T → 0, making use of the asymptotic
behaviour of the dilogarithm, Li2(−y0) ∼ −[π2/6 + log2(y0)/2] one can show that in the
limit of low temperature CV ∼ (π2/3)k2

BT σ {1 − O[log2(1 + y0)/y0]}. In the case of particles
inside 2D boxes, the leading term is identical to the result for fermions obtained by Li et al
[26].

2.2. Thermodynamic equivalence from the microscopic point of view: Haldane–Bose
transformation

Now let me inspect this equivalence from the microscopic point of view. For this I consider
a Haldane and a Bose system with the same particle number, N, and DOS, σ ≡ C.
In the Haldane system I divide the energy axis into intervals of equal length, δε, and
number them, starting from zero, at the lowest interval. Each of these intervals contains
the same number of single-particle states, d = σδε, and a variable number of particles,
nH,i (i � 0). For state counting purposes I define a ‘Bose dimension’ of the subspace
corresponding to the interval i as dB,i = d − α(nH,i − 1), so the total size of its Hilbert
space is wH,i = (dB,i + nH,i − 1)!/[nH,i!(dB,i − 1)!] [1]. I denote N̄H,i = ∑i−1

i=0 nH,j and
EH,i = nH,i (iδε − ε̄F,i ), where EH,i will be called the excitation energy of the particle group
nH,i , while ε̄F,i = αN̄H,i/σ is the (generalized) Fermi energy of a similar system,but consisting
only of N̄H,i particles (I disregarded the distribution of particles inside the ith energy interval).
Obviously, the ground-state energy of the Haldane system is UH,0 = ∑∞

i=0 nH,i ε̄F,i while
the total energy is UH = ∑∞

i=0 nH,iεH,i = ∑∞
i=0 EH,i + UH,0. Under canonical conditions,

the weight of such a distribution is WH,{ni} = [∏
i exp (−EH,i/kBT )wH,i

]/
ZH,N,T , where

ZH,N,T is the partition function and satisfies the condition
∑

{ni} WH,{ni} = 1; the sum is
taken over all distributions {ni}. Now let me put the distributions in the Haldane system in
correspondence with the distributions in the Bose system and calculate the new weights. For
this, given a distribution {ni} in the Haldane system, I divide the energy axis of the Bose
system into nonequal intervals, δεB,i = dB,i/σ , and place ni bosons in each of them. As a
consequence, the size of the Hilbert space of interval i is wB,i = wH,i . Since in a degenerate
Haldane gas, in an energy interval 1/σ on average 1/α particles coexist, to obtain the
correct energy distribution one has to overlap α/σ of any consecutive energy intervals above.
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Figure 1. Excitation in Bose and Fermi gases with the same equidistant single-particle energy
levels. The fermions in the g.s., I, II, . . . groups are in correspondence with the bosons in the
ground state, first, second, . . . excited states, respectively. In this way I establish a one-to-one
correspondence between the particle configurations in the Bose and Fermi systems, with the same
excitation energies.

Then, the excitation energy of the group ni is ni

∑i−1
0 δεB,j = ni

∑i−1
0 [(d − αnj )/σ ] ≡ EH,i .

Therefore, the two configurations have identical statistical weights. To prove that the two
systems are equivalent, I have to show that also, to any configuration in the Bose system
corresponds one configuration in the Haldane system, with the same excitation energy and
statistical weight. But this can be done just following the steps outlined above in reverse order.
In conclusion, I showed that there is a one-to-one correspondence between the configurations in
the Bose and Haldane systems. These configurations have the same ‘excitation energy’ and the
same statistical weights, so the two systems are statistically equivalent even at the microscopic
level. This analogy finds its simplest illustration in the case of ideal Bose and Fermi gases
with the same spectrum, which consists of nondegenerate, equidistant single-particle energy
levels (1D harmonic trap), as shown in figure 1.

From the equivalence proved above and the fact that a macroscopic Bose system with
σ ≡ C does not experience Bose condensation (see [27] for interpretations), I conclude that at
any finite temperature the Fermi sea is not still (excitations occur at any depth in the Fermi sea,
in macroscopic numbers). On the other hand, by transforming a Bose into a Fermi system, one
may describe it (and eventually calculate interaction effects) just by considering low-energy
particle–hole excitations around the Fermi surface (bosonization), which may considerably
simplify the calculations.

3. Generalization: interacting systems in arbitrary traps

3.1. Statistical mechanics in boxes

I investigate here the effects of particle–particle interaction in systems inside d D containers
with no external fields. The next subsection will consider arbitrary systems. In the Thomas–
Fermi mean field approximation (TF-MFA), the particle–particle interaction is replaced by
an effective one-body potential, HI(N) (I assume the interaction does not lead to a phase
separation), and the total energy of the system is

Eα,{k} =
∑
{k}

εk +
NHI(Nσ−1)

2
≡ Eex + U(0)

α,g.s. +
NHI(N)

2
(9)
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where εk are the single-particle energies and U(0)
α,g.s. is the ground-state energy of the system

without interaction. The quantum numbers that specify the single-particle states are denoted
by k (in the case of spinless particles, k is the momentum). If I denote the energy of the
ideal system by E

(0)

α,{k} ≡ ∑
{k} εk, then the excitation energy (for 2D boxes this is the energy

of the equivalent Bose system, as defined in section 2.2) is Eex,{k} ≡ E
(0)

α,{k} − U(0)
α,g.s.. In the

microcanonical ensemble N is fixed, so the partition function is just a function of the excitation
energy Eex: Z̄α,N (Eex). The canonical partition function is usually written as

Zα,N(β) =
∫ ∞

Uα,g.s.

dEα e−βEα Z̄α,N (Eex)

= e−βNHI(N)/2
∫ ∞

U
(0)
α,g.s.

dE(0)
α e(−βE(0)

α )Z̄α,N (Eex)︸ ︷︷ ︸
Z

(0)
α,N (β)

= e−βUα,g.s.

∫ ∞

0
dEex e−βEex Z̄α,N (Eex)︸ ︷︷ ︸

Z
(0)
0,N (β)

(10)

where I used the shorter notation β ≡ (kBT )−1 and Uα,g.s. ≡ U(0)
α,g.s. + 1

2 NHI(N). I also

denoted the canonical partition function of the ideal Haldane gas of parameter α by Z
(0)
α,N(β)

(or Z
(0)
α,N(T )). Z

(0)
0,N (β) corresponds to an equivalent Bose gas of excitations. The coefficients

in front of Z
(0)
α,N(β) and Z

(0)
0,N(β) in the two expressions for Zα,N(β) are redundant in the

canonical ensemble, but they should not be ignored in grand-canonical calculations.
Let me now find the population of the single-particle energy levels. Since by changing the

single-particle quantum numbers k into k′ the total energy of the system changes by ε′
k − εk,

the relative occupation probability of the states k and k′ is the same as in the case of the ideal
Haldane system of parameter α. These occupation probabilities in the canonical ensemble
follow from Z

(0)
α,N (β) which may be calculated by the usual saddle point method from the

grand-canonical ensemble of the ideal system (after dropping the term NHI(N)/2 from the
expression of total energy)—see [28] for the special case of Bose–Einstein condensed systems.
In this way, I obtain the average population of the state k, which is given by equation (1) with
ε ≡ εk and the apparent chemical potential, µa, which in 2D satisfies equation (3). Note also
that µa is not the real chemical potential, which is defined as

µ ≡ −kBT
∂ log(Zα,N(T ))

∂N
= dUα,g.s.

dN
− kBT

∂ log
(
Z

(0)

0,N(T )
)

∂N︸ ︷︷ ︸
≡µB

. (11)

Taking out the ground-state energy from the total energy of the system, as done in the
expressions (10), exposes the contribution to the partition function coming just from the
excitations, which have a bosonic character. Then µB may be called the ‘chemical potential’
of these excitations. Although limT →0 Z

(0)
0,N(T ) = 1, for any N (I assumed a nondegenerate

ground state), implies limT →0 µB(T ) = 0, unlike the chemical potential of an ideal Bose
system, µB may also take positive values, as for example in the case of ideal 1D fermions.
In the case of particles in a 2D box, the excitation partition function is just the partition
function of the equivalent Bose system. In appendix A, I apply equations (10) to calculate the
fluctuation of the ground-state population in a nonideal Bose–Einstein condensed system in a
grand-canonical ensemble, while in appendix B I discuss the MFA′ model in more detail.
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3.2. General trapping potential: thermodynamic considerations

To apply the procedure introduced in section 3.1 from a macroscopic point of view, I shall first
show some general properties of the entropy function of a neutral fluid, characterized by the
extensive parameters U (internal energy), V (volume) and N (particle number): S(U, V,N).
Non-essential parts of the proof will be skipped. In what follows, the parameters omitted in the
expressions are the parameters held fixed. S is a positive, homogeneous function of order one,
concave downwards [29] [S(λU, λV, λN) = λS(U, V,N) and S(U1 +U2, V1 +V2, N1 +N2) �
S(U1, V1, N1) + S(U2, V2, N2)]. The inverse function U(S, V,N) is concave upwards. If I
write again U(S, V,N) = Ug.s.(V ,N) + UB(S, V,N), then Ug.s.(V ,N) ≡ U(S = 0, V ,N)

is also concave upwards (but, in the general case, UB may not have this property).
I take Ug.s.(V ,N = 0) = 0. Now I fix V . I assume that N and U(S,Nfixed) take values in the
intervals [0,∞) and [Ug.s.(N),∞), respectively (the limits may be restricted further, such as
for example in systems of spins or hard-core particles, but here I work with these intervals).
The concavity property and the range of U implies that S(U) is monotonic (increasing). If
I fix U ≡ Ufixed and Ug.s. ≡ 0, then S(Ufixed, N) is also monotonic in N, otherwise it is
zero at both ends of the allowed interval along the N axis. If I introduce the function SB by
SB(UB, V ,N) = S(U, V,N), then SB and S offer two equivalent descriptions of the system.
Moreover, if SB is concave downwards and coincides with the entropy of a new system, say B,
then we may say that our original system, A, is thermodynamically equivalent with B (I denote
it by A∼ B). In such a case, if UCg.s.(V ,N) is any homogeneous function of order one, concave
upwards, then the entropy SC(UCg.s. +UB, V ,N) = SB(UB, V ,N) is a legitimate entropy (with
all required properties). Moreover, if SC(UCg.s. + UB, V ,N) describes a system C, then A ∼
B ∼ C. Therefore for any system described by S(U, V,N) I can define the Bose entropy SB

by the procedure outlined above. According to the definition given in section 1, the systems
with the same SB are called thermodynamically equivalent and they form an equivalence
class.

Since the number of microstates available in a system is dependent on the excitation energy
Eex, V and N (Ug.s.(V ,N) is a redundant quantity), one can calculate partition functions
having as their starting point the Bose entropy of the reservoir, SB. In the grand-canonical
ensemble, the probability associated with a microstate w(Eex, V ,N) of the system is
proportional to exp

[
k−1

B SB(Eex,V,N )
]

(I use calligraphic letters for the reservoir quantities).
Writing as usual the Taylor expansion of the reservoir entropy and identifying UB ≡ Eex, I
obtain the probability of the microstate w:

p(w) = e−β(UB−µBN)

Z (12)

where Z is the partition function, while µB is the chemical potential of the bosonic excitations,
defined by equation (11).

Obviously, the 2D Haldane gases described in the MFA form an equivalence class. Their
Bose entropy is the entropy of the equivalent ideal Bose gas. Since µB is the same for all
systems in an equivalence class, the difference between the chemical potentials of different
systems is due only to the ground-state energy (equation (11)). Whether the statistics, the
interaction, or both, are responsible for the dependence of the ground-state energy on N, is
of no importance. Two equivalent gases of different statistics (I also showed in section 3.1
that the MFA does not change the microscopic exclusion statistics properties), but with the
same Ug.s.(N, V ), have identical behaviour even in general trapping potentials, as long as the
Thomas–Fermi approximation holds (so that a system in a variable trapping potential can be
regarded as a collection of boxes with imaginary walls, in contact with each other).
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4. Conclusions

In summary, in the beginning of the paper I gave simple expressions, in terms of
polylogarithmic functions, for the thermodynamic quantities characterizing Haldane ideal
systems with constant density of single-particle states. These expressions are easy to handle
and show in a most simple way the thermodynamic equivalence (the same entropy function)
of such systems. Second, I showed the microscopic reason for this equivalence, which is the
similarity between the excitation spectra. The model used for this purpose is different from the
usual bosonization technique (see [30] for a review) and enables one to transform any Haldane
system into a Bose system, and vice versa. These transformations: Bose↔Haldane↔Fermi,
might be very useful if, for a given interaction, techniques developed for one kind of system
(such as bosonization for Fermi systems) can be transferred to other types of system (at low
temperatures, even in Bose systems, the effective thermodynamic contribution comes from a
small subset of single-particle states).

In section 3, I gave a general interpretation of this correspondence technique, by
subtracting from the internal energy of the system, U, the ground-state energy, Ug.s.. This led
to an equivalent writing of the partition function, in which the internal energy is replaced by
the excitation energy, U −Ug.s.. In this formulation the chemical potential should be redefined
(equation (11)). Moreover, this redefinition of entropy provides a clearer definition of the
thermodynamic equivalence, which splits the set of physical systems into equivalence classes.
Systems belonging to the same class have similar excitation spectra (at least up to corrections
that vanish in the thermodynamic limit). In appendix A, I apply the results of section 3 to
calculate particle fluctuations in a non-ideal, condensed Bose system.

In appendix B, I show some interesting characteristics of what I called the MFA′ model and
discuss similarities and differences with the mean field approximation and fractional exclusion
statistics. Although on microscopic intervals along the pseudoenergy axis, the MFA′ model
reproduces the characteristics of FES gases, as defined by Haldane [1] and Wu [4], in some
cases a rigorous calculation of the population of single-particle states reveals a condensation
phenomenon which also implies a malfunction of the usual calculation technique.
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Appendix A. Particle fluctuation in interacting Bose–Einstein gases

I apply here the technique described in section 3 to calculate the fluctuation of the ground state
occupation number, N0, of a condensed nonideal Bose gas, in the grand-canonical ensemble.
The interaction is assumed to produce a particle-dependentground-state energy. Let me denote
by Z(β, βµ) the grandcanonical partition function. Using the notation and arguments from
section 3, I write

Z(β, βµ) =
∑
N

e−β(Ug.s.−µN)

∫ ∞

0
dEex e−βEex Z̄N (Eex)︸ ︷︷ ︸

Z
(0)
N (β)

≡
∑
N

ZN(β, βµ)

and I shall omit the subscripts denoting α = 0. Z
(0)
N (β) is the canonical partition function

of the ideal Bose system. As shown in section 3.2, Ug.s.(N) is a function concave upwards.
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The maximum of the probability distribution over the particle number is given by the equation
∂ZN(β, βµ)/∂N = 0, where

∂ZN(β, βµ)

∂N
= ZN(β, βµ)

[
−β

dUg.s.

dN
+ βµ − βµB

]
≡ ZN(β, βµ)�N(β, βµ).

The solution of the equation will be denoted by Nmax. If there is no Nbound < ∞, so that
limN→Nbound[dUg.s./dN] = ∞, Nmax increases to infinity as µ increases. If the system is
not pathologic, then limN→∞ µB(N) = 0 and for large enough µ, Nmax is the solution of
dUg.s./dN = µ. In such a situation we say that the system is Bose–Einstein condensed, since
for the relevant values of Eex the configuration space does not increase with N (the ground
state is already a particle reservoir). The probability distribution ZN may be expanded around
N = Nmax to get ZN(β, βµ) ≈ ZNmax(β, βµ) exp[(∂�N/∂N)N=Nmax(N − Nmax)

2/2] where

∂�N(β, βµ)

∂N

∣∣∣∣
N=Nmax

= −β
d2Ug.s.

dN2
.

For fixed N, the fluctuation of N0, 〈δ2N0〉N , is equal to the fluctuation of the particle
number on the excited energy levels, 〈δ2Nex〉N (see, for example, [31–33] for fluctuations
in ideal gases). If the probability distribution of N0 in the canonical ensemble is
P(N0, N) = (2π〈δ2N0〉N)−1/2 exp[−(N0 − 〈N0〉N)2/2〈δ2N0〉N ], then the grand-canonical
probability distribution of N0 is

P(β, βµ,N0) =
√

β

2π

d2Ug.s.

dN2
P(N0, N) exp

[
−β

2

d2Ug.s.

dN2
(N − Nmax)

2

]
. (A.1)

Since the system is condensed, the grand-canonical fluctuation of the total particle number
〈δ2N〉 is equal to the fluctuation of the canonical average ground state occupation number.
Using this observation and equation (A.1), the total fluctuation of N0 in the grand-canonical
ensemble follows:

〈δ2N0〉β,βµ =
∫

dN

∫
dN0

(
N0 − 〈N0〉Nmax

)2P(β, βµ,N0)

= 〈δ2N0〉Nmax + 〈δ2N〉β,βµ.

Therefore, the grand-canonical total particle fluctuation of the nonideal gas adds quadratically
to the canonical fluctuation of the ground-state population, to give the total mean square
fluctuation of the number of particles in the condensate.

Appendix B. The MFA′ model versus mean field approximation and fractional
exclusion statistics

If the interaction Hamiltonian of section 3 is HI(N) ≡ σ−1gN , where g is a dimensionless
constant and σ ≡ C (constant), then (mostly) repeating the arguments from [11, 12, 13, 15]
I define the MFA′ model by assimilating the interaction energy from equation (9) into the
single-particle (kinetic) energies εk, and I define the pseudoenergies

ε̃(εk) ≡ εk +
∑

k′

g

σ
h(ε̃(εk) − ε̃(εk′))n(k′) (B.1)

where n(k′) is the population of the state k′ and h(x) = 1, h0, or 0, depending on whether
x > 0, x = 0, or x < 0, respectively; in what follows I assume g � −α and h0 ∈ [0, 1],
where α is the statistics parameter of a gas without interaction1. As Wu [4], I divide the
1 In the counting rule of Hansson et al [12], two particles could not have the same pseudoenergy even if they occupy
the same single-particle state. Since I work with a (quasi)continuous spectrum, I adopt the more general point of view
of Isakov and Viefers [13], but relaxing also the constraint h0 ≡ 1

2 .
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energy and pseudoenergy axes into infinitesimal (microscopic) intervals. If such microscopic
divisions exist for which none of the intervals is completely blocked, then the energy
interval [εk, εk + dε) is transformed into the pseudoenergy interval [ε̃k, ε̃k + dε̃), where
dε̃ = dε + σ−1gρ(εk) dε = dε + σ−1gρ̃(ε̃) dε̃, and σn(εk) dε ≡ ρ(εk) dε = ρ̃(ε̃) dε̃ represent
the average number of particles in the intervals under consideration. Moreover, the Bose
dimensions of the two intervals dε̃ and dε are

dB,dε = σ dε − αρ(εk) dε = σ dε̃ − (α + g)ρ̃(ε̃) dε̃ ≡ dB,dε̃ (B.2)

where σ − gρ̃(ε̃) is the effective density of states along the pseudoenergy axis. The Bose
density dB,dε̃ is identical to the Bose density of an ideal Haldane gas of parameter α + g (see
also [34] for related discussions). This implies, in accordance with [11, 13], that the MFA′

model leads to the same microscopic particle distribution ρ̃(ε̃) as an ideal Haldane gas of
statistics parameter α + g, call it nα+g(ε̃) (1) (I included the subscript α + g in the notation to
specify the statistics parameter of an ideal Haldane gas).

Appendix B.1. 2D Bose gas in the MFA′ approximation: an unexpected condensation

To continue exercising with the MFA′ approximation, let me now consider a 2D interacting
Bose gas. I assume that the particle–particle interaction is repulsive, so HI(N) ≡ σ−1gN ,
with g > 0. Under the canonical condition and in the MFA approximation, the gas is
thermodynamically equivalent to the ideal Bose gas and its entropy and specific heat are
given by the universal expressions (7) and (8). On the other hand, in the MFA′ model
the energies of the single-particle states are ‘shifted’ according to equation (B.1), but the
occupation of the single-particle states is done in accordance with the ‘original’ Bose statistics
(see equation (B.2)). If I number the single-particle (kinetic) energies and pseudoenergies as
ε0 = 0 < ε1 � · · · , and ε̃0 < ε̃1 � · · · , respectively (I assume that level 0 is nondegenerate),
then the MFA′ grand-canonical partition function is

Z̃(β, βµ) ≡
∑
{ni}

e−βσ−1gh0n
2
0+βµn0

∏
i�1

e−βε̃ini +βµni

≡
∑
n0

e−βσ−1gh0n
2
0+βµn0Z̃{ni}

ex (B.3)

where Z̃{ni}
ex ≡ ∑

{ni}
∏

i�1 e−βε̃ini+βµni , while ni represents the population of the single-particle
state i. The exponent −βσ−1gh0n

2
0 + βµn0 has a maximum for n0 ≡ n0,max = σµ(2gh0)

−1.
If µ < 0, n0,max < 0, and I expect no macroscopic population of any single-particle state. In
such a case, according to equation (B.2), ρ̃(ε̃) = σng(ε̃) and I should recover the previous
results for the ideal Haldane system of parameter g (see [4]). This will be shown to be
true and for the Haldane gas of parameter g > 0 (with the chemical potential µH) under
canonical conditions, a strictly positive temperature Tinv exists (defined by equation (4)), so
that µg(T < Tinv) > 0. Since for T > Tinv, µ = µH, I conclude that µ(T > Tinv) → 0 as
T → Tinv. Turning back to the MFA′ model in the grand-canonical ensemble, I investigate
the situation µ � 0. If µ > 0, the distribution e−βσ−1gh0n

2
0+βµn0 has a very sharp maximum

centred at n0 = n0,max > 0 and with the second moment δ2n0 = (βµ)−1n0,max. The relative
fluctuation of n0 is

√
δ2n0/n0,max = (βµ)−1/2n

−1/2
0,max, which is zero in the thermodynamic

limit. Most often, such a sharp distribution is believed to fix the average value of the variable
at the distribution maximum, but this is an example where this general procedure would lead
to wrong results.

For a rigorous calculation, I denote the grand-canonical partition function of the Haldane
system of parameter g by Zg(β, βµ) and assume as a beginning that ni�1 are all microscopic
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populations (at the end this will turn out to be true). Then

Z̃(β, βµ) ≡
∑
n0

Z̃n0(β, βµ) =
∑
n0

e−βσ−1gh0n
2
0+βµn0Zg[β, β(µ − ε̃1)]

≈
∑
n0

e−βσ−1gh0n
2
0+βµn0 Zg

[
β, β

(
µ − gn0

σ

)]
. (B.4)

The most probable value of n0 in the summation (B.4) is given by the equation ∂Z̃n0/∂n0 = 0.
To find this value I define the function

fh0(n0, µ) ≡ Z̃−1
n0

∂Z̃n0

∂n0
= −2h0n0

βg

σ
+ βµ − 〈Nex〉βg

σ
(B.5)

where 〈Nex〉 ≡ ∂ log(Zg)/∂(βµ′) is the average number of particles on the excited energy
levels. The most probable value of n0 is given by one of the zeros of f . For simplicity I shall
use the notations ξ ≡ βn0g/σ , ζ ≡ βµ and µ′ ≡ µ − σ−1gn0. Plugging equation (3) into
(B.5) I can rewrite f in two equivalent ways:

fh0(ξ, ζ ) = log

(
y ′

0

1 + y ′
0

)
+ (1 − 2h0)ξ (B.6)

= (1 − 2h0)ζ + 2h0 log(y ′
0) − [2h0 + g(1 − 2h0)] log(1 + y ′

0) (B.7)

where (1 + y ′
0)

1−g/y ′
0 = e−(ζ−ξ). Expression (B.6) implies that fh0(0, ζ ) < 0 for any h0

and fh0(ξ, ζ ) < 0 for any ξ , if h0 � 1/2. Therefore the probability distribution of n0

has a local maximum at n0 = 0. If h0 � 1/2, then n0 = 0 is the only maximum of fh0 .
Since Z̃n0 = Zg(β, βµ) exp

(
g−1kBT σ

∫ ξ(n0)

0 fh0(ξ
′, ζ ) dξ ′) and kBT σ is assumed to be a

macroscopic quantity, it follows that Z̃n0 has an infinitely sharp maximum at n0 = 0 which
implies that the ground-state is microscopically populated in spite of the very sharp maximum
of e−βσ−1gh0n

2
0+βµn0 , centred at n0,max.

To observe the behaviour of fh0 for large ξ we have to look at the expression (B.7).
For h0 = 0, the function has the simple form f0(ξ, ζ ) = ζ − g log(1 + y ′

0). Since y ′
0(ζ − ξ)

decreases monotonically from y ′
0(ζ ) to y ′

0(−∞) = 0, as ξ increases from 0 to ∞, then f0(ξ, ζ )

is also a monotonic function of ξ , with f0(0, ζ ) < 0 and f0(∞, ζ ) = ζ > 0. The only zero
of f0 is at y ′

0 = y ′
0,min ≡ eζ/g − 1 and corresponds to a minimum of probability. As one

can observe directly from equation (B.3), the maximum probability is ∞ and corresponds to
n0 = ∞. Yet, as I mentioned above, the system has a metastable state for microscopic n0,
which corresponds to the equivalent (ideal) Haldane distribution.

The function fh0(ξ, ζ ) is a continuous function in all the parameters and variables.
From equation (B.6) it follows that for fixed ξ and ζ , f is a decreasing function of
h0 and from equation (B.7) we observe that for ξ � ζ , fh0(ξ, ζ ) ≈ ζ − 2h0ξ . For
small enough h0, fh0(ξ, ζ ) = 0 has a solution at ξmax ≈ ζ/(2h0) and exp(ζ − ξmax) =
exp{−[(2h0)

−1 − 1]ζ } � exp(ζ/g) − 1. In such a case, and since fh0>0(ξ → ∞, ζ ) → −∞
and also fh0(0, ζ ) < 0, I can conclude that f has two zeros. The first corresponds to a local
minimum of probability for n0, while the second corresponds to a local maximum. Whether
n0 = 0 or n0 = n0,max ≡ ξmaxσ/(βg) ≈ σµ(2gh0)

−1 has higher probability, depends on the
specific values of h0 and ζ . Nevertheless, continuity of f and monotonicity in h0 imply that
a critical value of h0 exists between 0 and 1/2, and which increases monotonically with ζ , I
call it h0,cr(βµ), so that for h0 < h0,cr(βµ) the ground state is macroscopically populated (the
probability for n0 = n0,max is highest), while for h0 > h0,cr the ground state has microscopic
occupation number and is well described by the Haldane ideal gas of parameter g. If the
ground state is macroscopically populated, I say that the 2D MFA′ Bose system is condensed.
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Now I prove that none of the excited energy levels is macroscopically occupied.
Obviously, I start with ε̃1. This level can be macroscopically occupied if and only if
µ′(n0,max) � 0 and h0 � h0,cr(βµ′). The condition µ′ � 0 implies h0 � h0,cr(βµ)

and n0,max � g−1σµ. But for n0 = g−1σµ, ξ = ζ and fh0(ζ, ζ ) = log[y0(0)] −
log[1 + y0(0)] + (1 − 2h0)ζ—where y0(0) > 1 is a fixed value which satisfies the equa-
tion y0(0)(1 + y0(0))g−1 = 1. Therefore fh0(ζ, ζ ) is a function linear in ζ , which starts at
fh0(0, 0) = log[y0(0)] − log[1 + y0(0)] < 0 and, since h0 � h0,cr(βµ) < 1/2, increases to in-
finity as ζ increases. The continuity of fh0(ξ, ζ ) then completes the proof that ζ < ξmax always,
which implies that n0,max > g−1σµ. This proves the fact that ε̃1 and as a consequence any
state of pseudoenergy ε̃i�1 is microscopically populated. Also, the monotonic increase of h0,cr

with ζ implies that, if the ground state is microscopically populated, so are all the other states.
To finish the exercise I will show that for any 0 � h0 < 1/2, a temperature Tc < Tinv

exists at which the system condenses on the ground state. If the system is not condensed, it
is described as a Haldane gas of parameter g. In this case the relative fluctuation of the total
particle number N vanishes in the thermodynamic limit. On the other hand, for a condensed
system,

Z̃n0 = Z̃n0,max exp

(
kBT σ

g

∫ ξ(n0)

ξmax

fh0(ξ
′, ζ ) dξ ′

)

≈ Z̃n0,max exp

(
βg

2σ
(n0 − n0,max)

2 ∂fh0(ξ, ζ )

∂ξ

∣∣∣∣
ξ=ξmax

)
(B.8)

where I used the fact that fh0(ξmax, ζ ) = 0. From (B.8) it is easy to observe that the
relative fluctuation is proportional to n

−1/2
0,max, which vanishes in the thermodynamic limit. The

relative total particle fluctuation, which is obtained by adding together the contributions from
the ground state, from the excited states (described as a Haldane gas), and the correlations
between them, vanishes also. It is therefore safe to use the grand-canonical average values
in canonical calculations even for this unusual toy system (fine-tuning due to the change of
ensemble is only relevant for the finite size effects). At T = Tinv, µ = 0 and so is ζ . In
this case, from equation (B.7) we see that fh0(ξ, 0) < 0 for any ξ and h0, therefore n0 is
still microscopic, so the condensation temperature is lower. If the system does not condense,
µ increases as the temperature is lowered, which implies an even faster increase of ζ . If
I assume that for a chosen h0 < 1/2, Tc = 0 (the system does not condense), then I can
choose T so that ζ takes any value up to infinity. If ζ − ξ � 1, then y ′

0 ≈ e(ζ−ξ)/g and
log[(1 + y ′

0)/y
′
0] ≈ e−(ζ−ξ)/g � 1. Now, for any h0 < 1/2 and interval [0, ξ0], I can choose

ζ � 1 + ξ0, so that fh0(ξ0, ζ ) > 0 and
∫ ξ0

0 log[(1 + y ′
0)/y

′
0] < (1 − 2h0)ξ

2
0

/
2, which implies

that Z̃n0,max > Z̃n0(ξ0) > Z̃0 = Zg(β, βµ). In this case the system is condensed, with n0,max

particles on the ground state, so the initial assumption (Tc = 0) was wrong.
In conclusion, for any h0 < 1/2, a temperature Tc ∈ (0, Tinv) exists at which the

condensation occurs and below which the similarity between the MFA′ Bose system and the
‘usual’ ideal Haldane system [4] of parameter g is lost. Moreover, the onset of condensation
also removes any thermodynamic equivalence between gases described in the MFA and MFA′

models. The exercise presented here is also interesting due to the fact that it showed in a
concrete example how an infinitely sharp (in the thermodynamic sense) probability distribution
of particle on the ground state may be overwhelmed by the probability distribution of particles
on the excited energy levels. Vice versa, it also shows that the equilibrium distribution of the
Haldane gas, as deduced by Isakov [2, 3] and Wu [4], and which corresponds to microscopic
n0, may not be the equilibrium distribution, in spite of the FES manifested in equation (B.2).
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